
Virtual Labs for Data Structures:
Search and Mergesort
(Final Report submitted to CEMCA)

Venkatesh Choppella
IIIT Hyderabad

[2021-06-15 Tue]

1



1 Introduction

The present report is a summary of the activities done under the Virtual
Labs for Data Structures project supported by CEMCA, New Delhi for
the period 15 Feb 2021 – 15 Jun 2021.

The objective of the project was to design, develop and temporarily host
a collection of interactive experiments for the following topics:

1. Search: Carrying out search interactively in an array using a variety
of strategies.

2. Mergesort: Carry out merge and mergesort interactively in an array
using a variety of strategies.

The rest of the report is organised as follows. First, we list the timeline
of the project along with links to relevant documents (Section 2). Then
we briefly discuss the philosophy and pedagogy driving this particular
effort of Virtual Labs and contrast it with other existing approaches (Sec-
tion 3). We then list the experiments contained in each of the laboratory
topics, Search (Section 4) and Mergesort (Section 5). We summarise the
activities completed in 4th Phase of the project (Section 6). We also in-
clude feedback from a presentation, demo and discussion about the Vir-
tual Labs in early Jun (Section 7) We conclude with some pointers to the
next steps and future explorations related to Virtual Labs (Section 8).

2



2 Project Timeline and links to documents

The project officially commenced on 15th February 2021 with a duration
of four months. The project was divided into four phases, with mile-
stones for each phase. These are summarised in Table 1.

The final list of artefacts for delivery are listed in Table 2. These include
hosted URLs and source codes of the experiments in each of the two top-
ics.

Table 1: Activity timeline of the Project

No. Activity Document Event Date
1 Submission of Phase 1 [2021-03-16 Tue]

Requirements Gathering pdf (search)
report pdf (mergesort)

2 Submission of Phase 2 pdf (search) [2021-04-19 Mon]
Design report pdf (merge)

3 Phase 3 pdf (presentation) [2021-05-27 Thu]
Prototype
implementation
(presentation)

4 Presentation to pdf (presentation) [2021-06-09 Wed]
Open University
Directors/Heads of
Computer Science

5 Phase 4 pdf (this document) [2021-06-15 Tue]
Improvements and
Final report

3



Table 2: Hosted URLs and source code for the Virtual Labs Experi-
ments

Topic Hosted URL
Search
Hosted URL http://algodynamics.io/

search/
Source code Repository https://github.com/

algodynamics-iiith/
merge-sort/releases/
tag/v1.0.1

Mergesort
Hosted URL http://algodynamics.io/

mergesort/
Source code Repository https://github.com/

algodynamics-iiith/
search/releases/tag/v1.
0.0

4

http://algodynamics.io/search/
http://algodynamics.io/search/
https://github.com/algodynamics-iiith/merge-sort/releases/tag/v1.0.1
https://github.com/algodynamics-iiith/merge-sort/releases/tag/v1.0.1
https://github.com/algodynamics-iiith/merge-sort/releases/tag/v1.0.1
https://github.com/algodynamics-iiith/merge-sort/releases/tag/v1.0.1
http://algodynamics.io/mergesort/
http://algodynamics.io/mergesort/
https://github.com/algodynamics-iiith/search/releases/tag/v1.0.0
https://github.com/algodynamics-iiith/search/releases/tag/v1.0.0
https://github.com/algodynamics-iiith/search/releases/tag/v1.0.0
https://github.com/algodynamics-iiith/search/releases/tag/v1.0.0


3 Philosophy and Pedagogy

Virtual labs are a natural fit within the worldwide movement towards
online learning, dramatically accelerated due to the recent and ongoing
Covid-19 pandemic. The author of this report has already been involved
in a large virtual labs effort sponsored by the Government of India[1].

The justification for building Virtual Labs for computer science subjects
needs to be made carefully. Computing is a process that is already virtual
and does not correspond to any physical reality. However, the represen-
tation of computing processes (as evident in algorithms, for example) via
visual elements has essential value as demonstrated by several online
animations of algorithms available.

However, insight gained through animation and tracing an algorithm
is limited. Better insight comes with interaction (‘Learning by doing’).
Interaction implies taking control of the algorithm and steering it to the
answer by employing a problem solving strategy not necessarily dic-
tated by the algorithm. For example, an algorithm may employ a left-
to-right traversal strategy to search for an element in an array, while a
student may want to explore a right-to-left or a random strategy. Here
we are faced with the following challenge. Algorithms are, by definition,
non-interactive. All ‘input’ to an algorithm is used to initialise it. Once
an algorithm starts, interaction is forbidden. By ‘opening up’ an algo-
rithm for interaction, we automatically step outside the realm of algo-
rithms and enter the space of interactive transition systems. This insight
is the starting point of our approach to building the virtual labs for data
structures. There are two benefits of using transition systems as a start-
ing point. First, they provide a uniform high-level model for expressing
the interactive systems. These models also guide the implementation of
the experiments as web applications. Second, a sequence of successive
refinements of these models demonstrate the gradual development of
these models, an idea propounded by Niklaus Wirth, but in the context
of program development [2]. Each transition system isolates and illus-

5



trates a specific aspect of the algorithm. Interacting with the experiment
realising that system allows the student to discover a particular strategy
for solving the given problem. At each stage, interactivity is traded for
automation of the previous strategy.

Data Structures is an elementary course in Computer Science usually
done in the 2nd year by students of Computer Science. In many unvier-
sities, it is also very popular amongst non-computer science majors as it
forms the first solid introduction to computer science after the basic pro-
gramming course.

The data structures course is usually accompanied by a laboratory in
most universities. However, the focus of the laboratory is usually pro-
gramming, where the student is expected to code the algorithm given in
the textbook or introduced in the lecture. There is no scope for the stu-
dent to experiment with the algorithm, ‘open’ it up and interactively
solve the algorithmic problem.

The approach taken in this project is motivated by the need to fill this
gap between the lectures and programming. The interactive labs that we
have built are expected to be done after the lectures but before embarking
on the exercise of coding the algorithm. The interactive experiments help
the students gain the insight and confidence with the strategies that she
would then employ in the coding effort.

4 Experiments for Search

The suite of search experiments explore how a given number may be lo-
cated within an array of elements (numbers). The number may or may
not be present in the array. Four experiments have been built under this
topic. They are listed in Table 3.

6



Table 3: List of Search Experiments

No. Experiment URL
1. Random Search with replacement https://algodynamics.

io/search/
RandomWithReplacement.
html

2. Random Search without replacement https://algodynamics.
io/search/
RandomWithoutReplacement.
html

3. Linear Search https://algodynamics.
io/search/LinearSearch.
html

4. Binary Search https://algodynamics.
io/search/BinarySearch.
html

5 Experiments for Mergesort

The suite of experiments for mergesort explore how a list of numbers
may be sorted using mergesort. The first two (1 and 2) experiments in-
troduce the basic operation in mergesort, the shuffle. The next two (3 and
4) show how the merge operation may be seen as a shuffle based on a
particular strategy (‘picking’ the smaller element to shuffle). The next
experiment (5) employs merge to sort a list of numbers by proceeding
linearly along the list to look for sublists to merge, rather like TimSort,
but simpler. Experiment 6 is an interactive rendition of the the recursive
mergesort. Experiment 7 resembles 6 in that the same basic operations
— split and merge — are used, but with the freedom to merge any two
sorted sublists. They experiments are listed in Table 4.

7

https://algodynamics.io/search/RandomWithReplacement.html
https://algodynamics.io/search/RandomWithReplacement.html
https://algodynamics.io/search/RandomWithReplacement.html
https://algodynamics.io/search/RandomWithReplacement.html
https://algodynamics.io/search/RandomWithoutReplacement.html
https://algodynamics.io/search/RandomWithoutReplacement.html
https://algodynamics.io/search/RandomWithoutReplacement.html
https://algodynamics.io/search/RandomWithoutReplacement.html
https://algodynamics.io/search/LinearSearch.html
https://algodynamics.io/search/LinearSearch.html
https://algodynamics.io/search/LinearSearch.html
https://algodynamics.io/search/BinarySearch.html
https://algodynamics.io/search/BinarySearch.html
https://algodynamics.io/search/BinarySearch.html


Table 4: List of Mergesort Experiments

No. Experiment URL
1. Shuffle http://algodynamics.

io/mergesort/merge/
mergesystem.html

2. Shuffle (sorted) http://algodynamics.
io/mergesort/merge/
shuffleSorted.html

3. Merge Strategy https://algodynamics.
io/mergesort/merge/
msStrategy.html

4. Merge Algorithm https://algodynamics.
io/mergesort/merge/
msAlgo.html

5. Merge sublists https://algodynamics.
io/mergesort/merge.html

6. Mergesort (Recursive) https://algodynamics.
io/mergesort/recursive.
html

7. Mergesort (Arbitrary) https://algodynamics.
io/mergesort/
msarbitrary.html

8

http://algodynamics.io/mergesort/merge/mergesystem.html
http://algodynamics.io/mergesort/merge/mergesystem.html
http://algodynamics.io/mergesort/merge/mergesystem.html
http://algodynamics.io/mergesort/merge/shuffleSorted.html
http://algodynamics.io/mergesort/merge/shuffleSorted.html
http://algodynamics.io/mergesort/merge/shuffleSorted.html
https://algodynamics.io/mergesort/merge/msStrategy.html
https://algodynamics.io/mergesort/merge/msStrategy.html
https://algodynamics.io/mergesort/merge/msStrategy.html
https://algodynamics.io/mergesort/merge/msAlgo.html
https://algodynamics.io/mergesort/merge/msAlgo.html
https://algodynamics.io/mergesort/merge/msAlgo.html
https://algodynamics.io/mergesort/merge.html
https://algodynamics.io/mergesort/merge.html
https://algodynamics.io/mergesort/recursive.html
https://algodynamics.io/mergesort/recursive.html
https://algodynamics.io/mergesort/recursive.html
https://algodynamics.io/mergesort/msarbitrary.html
https://algodynamics.io/mergesort/msarbitrary.html
https://algodynamics.io/mergesort/msarbitrary.html


6 Improvements and Development done in Phase
4

By Phase 3, basic prototypes of all the search and mergesort experiments
was completed. In Phase 4, the following work was accomplished:

1. Improvement in UI based on discussions accompanying Phase 3
demo.

2. Translation of code base from Elm to Javascript (for some experi-
ments).

3. Initial prototype of experiment analytics (for the Search experi-
ments).

4. Hosting and source code repository release.

5. Final Report writing (this report).

7 Presentation, Demo, Discussion and Feedback
about Virtual Labs

A presentation of the Virtual Labs was made to Directors and Heads of
Computer Science departments of some of the Open Universities in In-
dia on 9th Jun 2021. The presentation was followed by a vigorous dis-
cussion on how to improve the scope of Computer Science Virtual Labs
in general, and also what steps should be taken to continue the present
line of work. It was felt that the Virtual Labs should be designed to better
cover the existing syllabi of contemporary computer science courses. The
general opinion from the group that more experiments need to be built.
Furthermore, some of the experiments involving programming should be

9



supported by cloud based compilers. In the pedagogy front, it was sug-
gested that Transition Systems should be introduced in the syllabus and
that teacher workshops should be run to train teachers in the transition
system and the Algodynamics pedagogy.

8 Conclusion

Over the coming months and years, Virtual Labs are poised to play an
increasingly central role in online education to alleviate the problems of
both access and quality. The Data Structures Virtual Labs are but a small,
yet refreshingly new beginning in the direction of making interactive ex-
periments in computer science available to students worldwide. Many
more experiments in Data Structures and Algorithms and other areas
of computing need to be explored, designed and implemented. In ad-
dition, these experiments need to be accompanied by a set of workshops
that introduce Algodynamics, the theoretical framework underlying the
Virtual Labs. These workshops would also illuminate the connection be-
tween the theory, interactive experiments and the implementation of al-
gorithms.

9 Bibliography

References

[1] Virtual labs for science and engineering. http://vlab.co.in,
2020. (accessed 01-01-2020).

[2] WIRTH, N. Program development by stepwise refinement. In Pi-
oneers and Their Contributions to Software Engineering. Springer, 2001,
pp. 545–569.

10

http://vlab.co.in

	Introduction
	Project Timeline and links to documents
	Philosophy and Pedagogy
	Experiments for Search
	Experiments for Mergesort
	Improvements and Development done in Phase 4
	Presentation, Demo, Discussion and Feedback about Virtual Labs
	Conclusion
	Bibliography

